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Abstract—Evolving connectionist Systems (ECoS) are a family ~ 6) Able to analyse and explain themselves, through for
of constructive artificial neural network algorithms that w ere example rule extraction.

first proposed by Kasabov in 1998, where ‘evolving’ in this 2 apje to represent spatial and temporal elements of data.
context means “changing over time”, rather than evolving

through simulated evolution. A decade on, the number of ECoS  Evolving Connectionist Systems are a family of construetiv
algorithms, and the problems to which they have been applied ANN algorithms that were developed to fulfil these seven
have multiplied. This paper reviews the current state-of-he-art  roqyirements. ECoS is a class of ANN architectures with a
in the field of ECoS networks via a substantial literature revew. learning algorithm that modifies the structure of the nekvas
It reviews (1) the motivations for ECoS, (2) the major ECoS L ;
algorithms in use, (3) previously existing constructive ajorithms ~ training examples are presented. Although the seminal ECoS
that are similar to ECoS, (4) empirical evaluations of ECoS architecture was the Evolving Fuzzy Neural Network (EFUNN,
networks over benchmark data sets, (5) applications of ECoS see Subsection 1I-B), several other architectures have bee
g]" erflul;z,\v?jriIrdecpt)irgr?éeg?sfe-srg;rc%aﬁiz) %ng(?swrlntgt Vigﬂ:g suggestian  geyeloped that utilise the ECoS algorithm. These incluge th
' minimalist Simple Evolving Connectionist System (SECoS,
Index Terms—Survey, Connectionism and neural nets, Knowl-  Sypsection II-C), Evolving Self-Organising Maps (ESOM,
edge acquisition Subsection 11-D), and the Dynamic Evolving Neural-Fuzzy
Inference System (DENFIS, Subsection II-E).

ECoS was designed around the following principles [66]:
"1) The ECoS training algorithm is designed with the in-

tention that all the algorithm can learn from the data
is learned in the first training pass (one-pass learning).

I. INTRODUCTION

S of 2008, ten years have passed since Evolving Con
nectionist Systems (ECoS) [67]-[71], [73], [74], [76]
artificial neural networks (ANN) were first proposed by
Kasabov [64]-[66]. As the variety of ECOS networks and their  aqgqitional exposure to the training data is not necessary.
applications have increased over this period, and theecircl 2) ECoS are intended to be used in an on-line learning
of researchers uging them has. expgnded outside of Kasabov's application. This means that new data will be constantly
own group, NOW IS an appropriate time to take stock of what  5pq continuously coming into the system, and that this
has been done with these networks. data must be learned by the network without forgetting
It is perhaps unfortunate that Kasabov chose the term e o|q The general ECoS architecture and learning
“evolving” to de_scrlbe his ANN. While it seems that for many algorithm allows an ECoS network to accommodate this
the term “evolving” evokes thoughts of evolutionary compu- new data without a catastrophic forgetting of the old.
tation, ECoS are not evolutionary algorithms. ECoS netaork 3) The manner in which neurons are added to an EC0S
do not use the mechanisms of evolutionary computation, such means that some training examples are stored, initially,
as fitness-based selection, reproduction and mutatiotedds verbatim within the structure of the network. These

as far as ECoS networks are concerned, the word “_evolving” examples are then either modified (refined) by exposure
has the much broader meaning of change through time. to further examples, or, depending upon the training

The genesis of ECoS ANN lay in the requirements of parameters used, remain the same and can be later
Intelligent Information Systems (IIS) [66], [72], [77].9l are retrieved.

information processing systems that deal with information )
an intelligent way, that is, they deal with information in ayy 1 N€ advantages of ECoS are that they avoid the problems
similar to that of a human domain expert. Seven general,mal sociated with traditional connectionist structureshsas

requirements for intelligent systems were enumerated6i [6 VILP [66, [77]: They are hard to over-train, due to the
These requirements are: copstructlve nature qf their Igarnmg algorithm; they h_ear
1) Fast learning from a large amount of data. qU|cI§Iy, as the learning algonthm IS a one-pass algorithm,
2) Real-time, incremental adaptation to new data. that is, it requires only a _smgle presentanon_of the d_ata se
' and they are far more resistant to catastrophic forgettiag t

3) An open structure, where new features (either inputs or . .
outputs) can be added most other models, as new training data is represented by

) Abe toreasonably keep rack of an reive data w00 T et aher han accommodatno e aceitr
has been previously seen. 9 '

5) Continuous improvement throughout the lifetime of thgdvantag_es_ over other gonstructlvg al_gorlthms._ Firstigy t
svstem are not limited to a particular application domain, they can
y ’ be applied to both classification and function approxinratio
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training data set, as is the case with some of the consteuctiv Incoming weight

algorithms in existence, such as RAN [137] and GAL [11]. vector

Finally, they are able to continue learning and are notictett D _) /

to learning a single training set as some other constructive

algorithms such as RAN and Cascade Correlation [35] are.
For the purposes of this paper, an ANN is considered to be D —)

an ECoS network if it fulfils the following criteria:

1) It is a constructive network, where the addition of neu- D
rons is determined by the novelty of individual training a
examples " . . " .
2) When a neuron is first added to the network, it explicitly IHPUt Inpuf EVOM“Q O"--l":lz'l-rlf|
represents the training example that caused it to be Yector layer layer layer
added.

3) It is capable of training over multiple data sets, witr'1:,
only a single pass over each set. '
4) It is explicitly derived from the principles of ECoS, as

_la'd down bY Kasabov in [66], [77]. those of classical connectionist systems such as MLP. For th

This paper reviews _the current state?of-the-art for _Ecop%rposes of this paper, the term ‘input layer’ refers to the
networks. In S_ectlon Il it presents the major ECoS algorsthm_neuron layer immediately preceding the evolving layer,lvhi

surveys techniques that have been developed for extractifg term ‘output layer’ means the neuron layer immediately
rules from ECoS networks and algorithms for optimising|iowing the evolving layer. This is irrespective of wheth

the performance of ECoS. Section Il compares ECOS &9 not these layers are the actual input or output layers of
selected other constructive algorithms and Section IVEew@Si ihe network proper. For example, in Figure 1, which shows
empirical evaluations of ECoS networks. Section V survhgs t 5 generic EC0S structure, the “input layer” could be the

applicatiqn of ECoS networks to a wide variety of problemﬁlput layer proper of the network (as with SECoS networks,
and Section VI suggests areas of future research. Due to #|gsection 11-C) or it could be a neuron layer that processes
large number of acronyms used in this paper, a list of acrany@e actual input values for presentation to the evolvingiay
is appended. (as with EFUNN networks, Subsection 1I-B). By the same
token, the “output layer” could be the actual output layer
Il. ECOS ALGORITHMS of the network (as it is with SEC0S) or a neuron layer that
This section reviews the extant ECoS algorithms. Firdtly, t further processes the outputs of the evolving layer (as with
general ECoS architecture and training algorithm are ptese EFuUNN). The connection layers from the input neuron layer
in Subsection II-A. The major members of the ECoS familio the evolving neuron layer and from the evolving layer to
are then described in Subsections 1I-B to II-E, where an-algihhe output neuron layer, are fully connected.
rithm is considered to be major if it has significant diffetea  The activation4,, of an evolving layer neurom is deter-
to other ECoS algorithms, or the algorithm has been widetyined by Equation 1.
applied. Minor ECoS algorithms are surveyed in Subsection
lI-F, where an algorithm is considered to be minor if it does An=1-D, 1)
not significantly differ from other ECoS algorithms. Metisod
of optimising ECoS networks are reviewed in Subsection.ll-

g. 1. General ECoS architecture

here D,, is the distance between the input vector and the

Algorithms 1 tracting f les ECOS netw k'ncoming weight vector for that neuron. Since ECoS networks
gorithms for extracting tuzzy ruies from 0> NEIWOrkS e fully connected, it is possible to measure the distance

a;ed_tqlesclrlbe(: ”j[ StUbSEeFCtKI)RI ”+(|;|’ ggg: rgethodsd for _zd(;'%%tween the current input vector and the incoming weight
aadditional outputs to u an 0> are described JRetor of each evolving-layer neuron. Although the distanc

Subsection Il-!. can be measured in any way that is appropriate for the inputs,
this distance function must return a value in the range ab zer
A. ECoS Architecture and Learning to unity. For this reason, most ECoS algorithms assume that

The first ECoS network was EFuNN (Subsection II-B)he input data will be normalised, as it is far easier to foateu
from which a generalised constructive ANN architecture araldistance function that produces output in the desirederang
training algorithm was derived. if it is normalised to the range zero to unity.

An ECoS network is a multiple neuron layer, constructive Whereas most ANN propagate the activation of each neuron
artificial neural network. An ECoS network will always havdrom one layer to the next, ECoS evolving layers propagate
at least one ‘evolving’ neuron layer. This is the construecti their activation by one of two alternative strategies. Thst fi
layer, the layer that will grow and adapt itself to the incami of these strategies, entitl€@heOfNpropagation, involves only
data, and is the layer with which the learning algorithm isstnopropagating the activation of the most highly activatediffw
concerned. The meaning of the connections leading into tmisg”) neuron. The second stratedyanyOfN propagates the
layer, the activation of this layer's neurons and the fodvamactivation values of those neurons with an activation value
propagation algorithms of the evolving layer all differ fino greater than the activation thresholgy,,..



for each input vectod and its associated desired outpul here:
vectorO, do - . . . .
W, o(t) is the connection weight fromj to outputo at timet
Propagatd through the network 2 - )
bag 9 A; is the activation ofj

F'n.d the most activated evolving layer neurgrand its E, is the signed error at, as measured according to Equation
activation 4; 4
if A; < S, then '

Add a neuron

else Eo - Oo - Ao (4)
Find the errors betwee®4 and the output activations where:
A, O, is the desired activation value of output
if |Og— A,| > Eupy then A, is the actual activation af.
Add a neuron This is essentially the perceptron learning rule. From this
else it becomes apparent that in [65] and subsequent publication
Update the connections to the winning evolvingg1] [172] the termsO, and A, above were incorrectly
layer neuronj reversed.
en_d if Since this algorithm deals with each training example as it i
end if seen, the way in which the network learns will be affected by
end for the order in which examples are presented. While this is not a

concern for applications that are continuously learnihig, for

situations where the network is learning from an existing se

of data. Although no literature has come to light that exadin
The ECoS learning algorithm is based on accommodati%e effect Of. Cha”Qi“Q the order_ Of_ trgining exa_lmples, it was

new training examples within the evolving layer, by eithefOnsidered in designing the optimisation algorithm of [167

modifying the weight values of the connections attached &5 described in Subsection II-G.

the evolving layer neurons, or by adding a new neuron to

that layer. The algorithm employed is described in Figure B. Evolving Fuzzy Neural Networks

The addition of neurons to the evolving layer is driven by EFUNN was the first ECoS network described [65], [66]

the novelty of the current training example: if the currergnd is an application of the ECoS principles to the Fuzzy
example is particularly novel (it is not adequately repnésé %

Fig. 2. ECoS learning algorithm

o i | Network (FuNN) [85]. It i fi I feed
by the existing neurons) then a new neuron will be adde, eural Network (FUNN) [85]. It is a five neuron layer fee

Four parameters are involved in this algorithm: the serisiti rward network (Figure 3), where each layer performs a
: 7 specific function. The first neuron layer is the input laydreT
thresholdS;y,., the error thresholdz,;,., and the two learning P Y P Y

o econd layer is the condition layer. Each neuron in thisrlaye
ratesn; andr,. The s_gn3|t|V|ty threshold and error threshol epresents a single triangular fuzzy membership functii)(
both COF‘”O.' the gddmon of neurons and when_ a nheuron f82] attached to a particular input, and performs fuzzifora
added, its incoming connection weight vector is set to t

. ? . ; . §t the input values based on that MF. This layer is not fully
|dnpgt \(/ject(irl,t andtclz:)s 0$trg];omg W?'gtht vedctor 'Stﬁet tr? Itgeconnected to the input layer, as each condition neuron is
esired output vectolq. 1he Sensitivity and error INfeSnoldS,, \nacted to a single input neuron, that is, each input megro

are measures of t.he novelty of the current example. As 9an.cc,bo%nected to its own subset of condition neurons. The weight
seen in Figure 2, if the current example causes a low adgiivati

that is. it | | with t 10 th ot rth of the connection between the condition neuron and its input
(that is, 't 1S novel with respect fo the existing neurons) defines the centre of the condition neuron’s MF, where the
the sensitivity threshold will cause a neuron to be addet t

. er and upper bounds of the MF are defined as the centres of
represents that example. If the example does not trigger

ddit f i th itivity threshold. but thivat & neighbouring MF. The activation function for a conditio
e U, WG based o ianulr s uncons
greater than the error threshold (that is, it had a noveluiitp 165, [66], is defined by Equation 5.
then a neuron will be added.
1 — 1;—Wi; o

The weights of the connections from each inpub the Wi Wie <1li < Wi

winning neuron; are modified according to Equation 2. __Wieli . ) .
g ) g q A, = 1 e Wieo1 < Ii < Wi, ()
1, Wie=1;
Wit +1) = Wi @) +m(l —Wi;(t)) 2 0, ot herwi se
where: where:
W, ;(t) is the connection weight from inputto j at timet A, is the activation of the condition node
I; is theith component of the input vectdr W, . is the connection weight defining the centre of the MF
The weights from neurory to output o are modified attached to condition neuran
according to Equation 3. Wi -1 is the connection weight defining the centre of the

MF to the left ofc
Wio(t+1) = W;o(t) +m2d,; E, (3) Wi;,41 is the connection weight defining the centre of the



MF to the right ofc

I is the input vector

Wi.. is the connection weight from input noddo condition
nodec.

The third layer of neurons is the evolving layer, which is
also referred to as the rule layer. The distance measure used

in this layer, which is the distance between the fuzzifieditnp
vector and the weight vector, is described in Equation 6.

% <Z |I; — Wzn|>
_ i1
ZWi,n
i=1

(6) Input Condition Rule Action Output

D
" Layer Layer Layer Layer Layer

Fig. 3. EFuNN architecture

where:

¢ is the number of condition neurons (fuzzy inputs)
I is the fuzzified input vector

W is the Condition to Rule layer weight matrix.

The fourth layer of neurons is the action layer: neurons jfinimum number of neuron layers necessary to learn data.
this layer represent fuzzy membership functions attacbed Ajyernatively, SECoS can be viewed as a minimalist EFUNN,
the output neurons. This layer is similar to the input layefyiy, the fuzzification and defuzzification components being
in that each action neuron is connected only to the outpiliy,yeq. Lacking the fuzzification and defuzzification mech
neuron with which its membership function is associated,isms of EFUNN, the SEC0S model was created for several
Also, the value of the co_nnectlon weight connectm_g theoacti o 550ns. Firstly, they are intended as a simpler altenativ
neuron to its output defines the centre of the action neuroEg N . since they lack the fuzzification and defuzzification
membership function. The activation function of the actiofyr ctures of EFUNN. SECoS are much simpler to implement
layer neurons is a simple saturatedllinear function.. Thd ﬁr\ﬁaving fewer connection matrices and a smaller number of
neuron layer is the output layer. This calculates crisp Ut rons, there is much less processing involved in sinmgati
values from the fuzzy output values produced by the actionggecog network. They are also much easier to understand
layer neurons. The output layer performs centre of graviy, analyse: while EFUNN expands the dimensionality of the
defuzzification over the action layer activations to pra&luny + and output spaces with its fuzzy logic elements, SEC0S
a crisp output. This value is calculated according to Equali  4a4|s with the input and output space ‘as is’. Thereforéerat

than dealing with a fuzzy problem space, SECoS deals with
_ S W ada the problem space directly. Each neuron that is added to the

Ao TS (7) network during training represents a point in the problem
2 Aa space, rather than a point in the expanded fuzzy problenespac
where: Secondly, for some situations, fuzzified inputs are not only
4, is the activation of the output node unnecessary but harmful to performance, as they lead to an
A, is the activation of action node increase in the dimensionality of the input space and hence
m is the number of action neurons attachedto an increase in the number of evolving layer neurons. Binary
Wo,q is the value of the connection weight from action nodgata sets are particularly vulnerable to this, as fuzzificat
a to outputo does nothing but increase the dimensionality of the inpta.da

By removing the fuzzification and defuzzification capabili-
Figure 3 shows an idealised EFUNN with three input negies, the adaptation advantages of EFUNN are retained while
rons. Two MF are attached to the first input neuron, three gﬁminating the disadvantages of fuzzification, Speci[jcby
the second, and two to the third. There are three rule neur@ﬁ‘.ﬁqinating the need to select the number and parametdneoft
and two outputs, with two MF attached to each output.  input and output membership functions. For most applicatio
EFuNN have been applied to a large number of applicationsizCoS are able to model the training data with fewer neurons

as discussed in Section V, and have also been found tojR&he evolving layer than an equivalent EFUNN [159].
useful as member of ensembles [118], [172].

) _ o A SECoS network consists of three layers of neurons: The
C. Simple Evolving Connectionist Systems input layer, with linear transfer functions; The evolvirayér;
The Simple Evolving Connectionist System (SECo0S) wasnd an output layer with a simple saturated linear activatio
proposed as a minimalist implementation of the ECoS algfunction. The distance measure used in the evolving layer is
rithm [161], [165], that is, it is an architecture that ha® ththe normalised Manhattan distance, as shown in Equation 8:



for each input vectolf do

c Find the set of neurond such thata; € N > Sy,
SNL=Win| if N =0 then
D, = izcl 8) Insert a neuronw
Connectw to its two nearest neighbouks

D1 i+ Wi | SetN = (w, k)

=t else
where: Setw to the most activated neuron
c is the number of input neurons in the SECoS Update connection weights from input to map neurons
I is the input vector h € N according toAW; 5, = vyap(I; — W; )
W is the input to evolving layer weight matrix. end if

Set connections fromw to k according toW,, , =
The normalised Euclidean distance can also be used, as — %na

mazx(an,ar)

defined by Equation 9. end for
z here~ is the learning rate parameter.
\/2'71(1' - Wi n)2 W K
D, = = : 9
\/E ( ) Fig. 4. ESOM learning algorithm

There are two layers of connections in the SECoS model.
The first connects the input neuron layer to the evolvingrtayeE
The weight values here represent the coordinates of the poin
in input space each evolving layer neuron represents. TheThe Dynamic Evolving Neural-Fuzzy Inference System
second layer of connections connects the evolving layer (@ENFIS) is an application of the ECoS principles to an
the output neuron layer. The weights in this layer represeANN that implements a Takagi-Sugeno fuzzy inference system
the output values associated with the input examples. [152]. DENFIS was first described in [86], [147] and was more

The learning algorithm is the same as that described éompletely described in [87].

Subsection II-A and as used by EFUNN. However in SECoSDENFIS heavily utilises the so-called Evolving Clustering
the input vectorI is the actual crisp input vector, while theMethod (ECM) [149]. This is based on the concept of dy-
desired output®, vector is the crisp target output vector. namically adding and modifying the clusters as new data is
presented, where the modification to the clusters affedis bo
the position of the clusters and the size of the cluster, in
terms of a radius parameter associated with each cluster tha

The previously presented algorithms, EFUNN and SECo&gtermines the boundaries of that cluster. ECM has only one
both follow the general ECoS architecture and training gyarameter, which drives the addition of clusters, known as
gorithm outlined in Subsection II-A. While it is still anthe distance threshold,,,. When new clusters are added,
ECoS network, the Evolving Self-Organising Map (ESOMiheir centres are set to equal the example that triggered the
[30]-[32] deviates from the general algorithms in order tgreation, and the radiug of a new cluster is initially set to
implement unsupervised learning. As in a conventional-Selfero. R grows as more vectors are allocated to the cluster. Due
Organising Map (SOM) [96] the ESOM has two layers ofp the mechanism by whicl is updated, it cannot exceed
neurons, the input layer and the map layer, and weighteg], = The ECM algorithm is shown in Figure 5.
connections from the input to map neurons. It is the map\when cluster is updated, its centre is shifted closerTtp

layer that evolves in this model. Neurons also have weightgg its radiusk, (¢ + 1) is set according to Equation 11
connections to their two immediate neighbours. The adtinat

A, of e_ach map neuron from the input vectol is calculated Ra(t+1) = Si,a (11)
according to Equation 10.

Dynamic Evolving Neural-Fuzzy Inference Systems

D. Evolving Self-Organising Maps

(10) on the line betweed, (t) andI, at a distance oR, (¢ + 1).
Although ECM appears to be a useful clustering method in

wheree is a radial. and of itself, its primary function is to support the infecerof

The ESOM learning algorithm is based on the concefiizzy rules from data in DENFIS. This is done in two phases,
of dynamically forming spatial clusters, and is presented firstly forming the antecedents, followed by the consequent
Figure 4. functions. The antecedents are formulated by finding which

An optional additional step to the learning algorithm igombination of input membership functions (MF) activate th
to prune the weakest connections after a certain numbernedst highly for the centre of the cluster, that is, the values
examples have been presented, and also to prune neuronsrdfaesented by the cluster centre are fuzzified by the input
have had all of their connections pruned. Since ESOM dokK- set and the winning, most highly activated, MF are taken
not perform vector quantisation as a conventional SOM does the antecedents for that rule. This is very similar in ephc
Sammon projection [144] must be used to visualise the dleistéo the way in which fuzzy rules are extracted from EFUNN
that are formed. and SECoS (Subsections II-H1 and 1I-H2). The consequent

2

) The new centre ofi, C,,(t+ 1) is set so that its distance is
(—2||Iz' — Winll )
A, =ex
€



Create the first cluster cent@, from the first exampldy The Evolving Classifier Function (ECF) [77] uses a similar
for ?aCh sub;e_quent v_ectI),[ do algorithm to ECMC. Parallels to EFUNN and SECoS are
Find the minimum distancé i, betweenl,, and each obvious and expected, although there are still differences
_cluster c_entre’Jn . between the ECMC and SECoS learning algorithms. The
it Dymin is less than any cluster raditisen addition of fuzzy membership functions to ECM yielded the
Add I, to the nearest cluster Evolving Fuzzy Clustering Method (EFCM ) [140].
elsg . . The Evolving Fuzzy Inference System (EFIS) [133] is a
Find the clusten with minimum value ofSi ;, where 4oy e of DENFIS that includes attributes of the Hybrid
Sij = Di;j + R, Di; is the distance between the‘Fuzzy Inference System HyFIS [95], and utilises an enhanced
cluster.centre and vectof, and 1t; is the radius of version of ECM called ECMm (although the origins of the
f:lusterz acronym ECMm are not clearly laid out). Another algorithm
if Siq > 2Dy, then derived from DENFIS is the Dynamic Evolving Computation
Create a new cluster System (DECS) which was proposed in [23]. DECS is quite

else similar to DENFIS, but includes a genetic algorithm to eeolv
Updatea and tune the rules.
en_d i A Weighted EFUNN (WEFuUNN) was reported in [21]. In
en?jnfc(j)rlf this model, each input has a weighting factor associateld wit

it, and a weighted Euclidean distance function is used in the

Fig. 5. ECM algorithm evolving layer. An exponential, as opposed to saturatezhfin
transfer function was used for the evolving layer neurorgs an
thek-nearest evolving layer neurons were allowed to propagate

functions are then found using a Least Means Estimation pitbeir activations to the action layer (see theof-n activation

cess over the examples within the cluster. Thus, each cligstestrategy in Subsection II-A). When evaluated over a casystu

used as the basis of a single rule. Clustering and reforinalatproblem of laying out printed circuit boards, WEFUNN was

of the rules is performed whenever a new training example@ore accurate than EFUNN.

presented to the network. For any input veddhe output of

the DENFIS in calculated as the combined output of the mast ECcoS Optimisation Algorithms

strongly activatedn rules. There is no adjustment of the MF

. L Optimisation of ECoS is taken to mean the creation of an
during training.

ECoS network that fulfils the following criteria. The networ

should:
F. Other ECoS Algorithms « Exhibit good memorisation of the training data
The previous sections have reviewed the major ECoS algo- EXxhibit good generalisation to data it has not previously
rithms, that is, those algorithms that are significantlyeatént experienced
to one another, or that are more widely used. This subsectiorr Be parsimonious, that is, be of the smallest size that can
briefly reviews ECoS algorithms that are less frequentlyntbu  fulfil the previous two criteria.
in the literature. ECoS optimisation algorithms fall into two broad groupseTh

Nominal-scale Evolving Connectionist Systems (NECoS3jst is based on combining, or aggregating, evolving layer
were introduced in [164]. These extend the ECoS algorithngurons. The second is based on evolutionary algorithms.
to allow it to deal with nominal-scale data [151]. In a NECoS 1) Neuron AggregationEvolving layer neuron aggregation
network, the connections from the input to evolving layeis the process of combining several adjacent neurons ingo on
represent nominal-scale class labels, and the distanceumgeaneuron that represents all of the previous exemplars fdr tha
is a simple similarity measure. The learning algorithm waspatial region. During the aggregation process, the distan
modified so that the labels would change during training teetween the incoming and outgoing weight vectors of two
reflect the more common classes seen for each input variableurons is calculated. If the distances are below specified

Temporal extensions to ECoS, based on the Jordan-Elmharesholds, the two neurons are either aggregated together
Simple Recurrent Network (SRN) [34], [102], have also beesdded to a set of neurons that are all aggregated into one
proposed [90]. These extensions add a second evolving lajE59], [165]. The rationale behind aggregation is to reduce
(analogous to the context layer in SRN) to the ECoS, whithe size of the evolving layer of the ECoS, while retaining
is solely connected to the main evolving layer. Connectiotise knowledge stored within the connections to each neuron.
between the context layer and the evolving layer were matifi€onnection weights of the resulting neuron are set to the
by Hebbian learning. arithmetic mean of the weights of the aggregated neurons. Tw

The Evolving Clustering Method for Classification (ECMCXinds of aggregation have been developed: online, whiabstak
was described in [148]. ECMC is ECM with class labels, thagslace during training; and offline, which takes place when
is, each cluster has a class label associated with it. Unknotkaining over a data set is complete.
examples are classified according to which cluster they areOnline aggregation is carried out when neuron connection
assigned to, that is, they are classified according to whialeights are modified. After the weight changes have been
class prototype they are closest to. applied, the incoming and outgoing distances between the



modified neuron and its immediate neighbours are measure@s based entirely on the error over the training data set. A
If both distances are below the aggregation thresholds,tthee co-evolutionary GA was used to evolve ensembles of EFUNN
neurons are aggregated together. There is no need to meaBuf&22], where data was first clustered, and each clustér spl
the distance between any other neurons, as only one neurdn a training and a testing data set. The GA optimised an
at a time is ever modified under the canonical ECoS trainimgdividual EFUNN over each training and testing set, whbhee t
algorithm. Note that this algorithm assumes that new neurooptimisation was with respect to the accuracy and size of the
are allocated spatially, that is, new neurons are insergad nnetwork. The overall result was that the ensemble performed
to the existing neurons they are closest to in space. better than a single EFuNN trained over the entire data set. A
Online aggregation has the advantage of modifying thleustering method similar to ECM was used in [120], [121],
network as training is under way: there is no need to haithere the same GA-based ensemble approach was used.
training at any point to perform a global (offline) aggregati  An unusual approach to off-line optimisation was reported
and there is no need to examine every neuron in the evolvimg14]. In this work, a GA was used to optimise the fuzzy rules
layer as there is with offline aggregation. and membership functions that were extracted from a trained
The offline aggregation strategy exhaustively comparels edeFUNN. The modified rules and MF were then re-inserted into
neuron to every other neuron, which requiré&(n — 1) the EFuNN for testing. Thus, the GA was really optimising
comparisons for. neurons. This strategy is very thorough: alé fuzzy system, although the close-coupling between EFuUNN
neurons that are close together will be aggregated togetberand their associated rules and MF made it an useful approach.
matter where they are in the evolving layer. Offline aggriegat
requires that training be halted before optimisation can kb Knowledge Discovery with ECoS Networks
carried out. However, experiments have shown [159] that it i Rule extraction from ANN is the process of formulating,
able to reduce the size of the target network more effegtivetom a trained artificial neural network (ANN), a set of
than online aggregation. symbolic rules that mimic the behaviour of the ANN [13],
2) Evolutionary MethodsThe majority of the optimisation [63], [125]. Six motivations for extracting rules from ANNe
methods developed thus far for ECoS involve some form gfven in [13]: Provision of a user explanation capabilityatt
evolutionary computation (EC) [37]. Types of EC used ineluds, elucidating what the ANN has learned; Extension of ANN
genetic algorithms (GA) [27], [55], [58], [124] and evoloti  systems to safety-critical problem domains, by increasing
strategies (ES) [15], [57]. confidence in the ANN via explanation; Software verification
Although EA have been used in many ways to optimisgnd debugging of ANN components in software systems, by
ANN (see for example the excellent review by Yao [181]glucidating the internal state of the ANN; Improving the
the applications to ECoS have been largely limited to thfeneralisation of ANN solutions, by providing a means to
optimisation of the training parameters of the ECoS. Thsredict where the ANN may fail (via examination of the rules)
optimisation is done in either an on-line manner (that is, @ata exploration and the induction of scientific theorieg, b
training was under way) or in an off-line or batch mode (whergxtracting rules from an ANN trained over a data set for
the parameters were optimised with respect to a specific d@faich the processes are unknown; Knowledge acquisition for
set). symbolic Al systems, by providing a method of automatically
Evolution strategies were used to optimise the parametegsuiring rules.
on-line in both [166] and [20]. While [166] used a simple Since ECoS learn by partitioning the input space into
(1+1) ES to optimise all four basic training parameters faegions, and fuzzy rules can be visualised as methods of
each training example, [20] used (@, \) ES to optimise associating regions of input space with consequents, the fit
the learning rates only, with respect to a sliding window dfetween the two models is quite natural [75], [78]. Rule
data where the window was moved though the training dasatraction is simply a matter of mapping the two sets of
stream. A similar windowing-of-data approach was used Hegions together and by so doing finding the antecedents and
[89], although in this case a GA was used instead of an E§onsequents.
The GA optimised all learning parameters and the fitness wasl) Fuzzy Rule Extraction from EFuNNThe Rule Ex-
evaluated as a function of the error over the training dateaction from EFUNN (RE-EFuUNN) algorithm for extracting
window. Zadeh-Mamdani fuzzy rules [113] as described in [75], [91],
Genetic algorithms were used for off-line optimisation ofs presented in Figure 6.
both training parameters and the order of training examples2) Fuzzy Rule Extraction from SECo®lthough SECoS
in [167], [159]. The justification for optimising the ordef o do not have fuzzy logic elements within their structure, it
the examples was that the overall size and performancei®fpossible to extract fuzzy rules from them using external
the ECoS network is determined by the values of the trainidgF [162]. The rationale behind this approach was that there
parameters and the order in which examples are presented. iBhno practical difference between the fuzzy exemplars in an
fitness function in this case was based on minimising both tB&uNN, where those exemplars have been fuzzified by the
error over the provided data set, and the overall changeein BFuNN internal MF, and using external MF to fuzzify the
size of the evolving layer of the EC0S. A similar approach wagisp exemplars stored within a SEC0S. The SECoS Fuzzy
taken in [119], although the order of the training examplas wRule Extraction algorithm (SEC0oS-FRE) for extracting Zade
not optimised. A GA was also used for off-line optimisatiodMamdani fuzzy rules from trained SECoS networks is as in
of the training parameters in [88], where the fithess fumctid-igure 7.



for each evolving layer neuroh do

Create a new rule

for each input neuron do
Find the condition neuror with the largest weight
Wc,h
Add an antecedent toof the form % is ¢ W, ;,” where
W, is the confidence factor for that antecedent

end for

for each output neuron do
Find the action neuron with the largest weight?;, ,
Add a consequent to of the form ‘o is a W, ,” where
Wih,q is the confidence factor for that consequent

that new target classes will be introduced that must be leand|

by the existing system. In these cases, there are threebpossi
solutions. Firstly, the existing system can be thrown away a

a new network created from scratch. This is not satisfactory
for two reasons: Firstly, the amount of time required may be
significant. Secondly, the data that has been seen and must be
accommodated by the existing network may not be available
for retraining.

The second option is to retain the existing network and
create a new network specifically to handle the new class.
This avoids the problem of training time, but the problem of
missing data remains: if the new network is to handle the new

enzn%:or clas_g, then it must be trained on negative examples as well as
positive examples.
Fig. 6. EFUNN fuzzy rule extraction algorithm The third option is to modify the existing network to
accommodate the new class. This has the advantage of only
for each evolving layer neuroh do requiring additional training on the new class, obviatiraghb
Create a new rule the time and data availability problems of the previous two
for each input neurom do options. For conventional ANN such as MLP this is a very
Find the MF, associated with that activates the most difficult thing to do, but ECoS are inherently suited to this
strongly for Wi j, problem; whereas neurons in MLP learn with respect to the

Add an antecedent to of the form " is p (W; 5)",  entire input space (global learning), neurons in ECoS learn
where u(W; 5) is the confidence factor for the an-only with respect to a small patch of the problem space (local

tecedent learning).
end for The method of adding new outputs to ECoS networks is re-
for each output neuron do ferred to as output space expansion, because each class adde
Find the MFy associated witl that activates the mostincreases the dimensionality of the output space. Algorith
strongly for Wy, for adding output classes have been developed for both EFUNN

Add a consequent te of the form ‘o is 4 u(Whr,)", and SECoS.
where (W) is the confidence factor for the conse- 1) EFUNN Output ExpansionExpansion of the output

quent space of EFUNN was introduced in [53]. Addition of a new
end for output neuron effects the output neuron layer, the action
end for layer and the rule to action layer connections. When a new

output and its action neurons are inserted into the EFUN&, th
connections from the existing rule neurons to the new action
neurons are set to the fuzzified value of the crisp output,zero

Functionally, this algorithm is equivalent to the RE-EFuNNISING the fuzzy membership functions defined for the new
algorithm. The RE-EFUNN algorithm chooses antecedent MiE!on neurons. This has the effect of making all existirlg ru
based on the highest magnitude weights from the condition1§Urons represent negative examples for the new output, tha
rule neurons, which are really crisp exemplar values thae hdS: if any of the existing rule neurons fire, then the new otitpu
been fuzzified by the EFUNNSs internal MF. The SECoS-FR‘I‘-‘_*i" be inactive by default. The network is then further tred
algorithm chooses antecedent MF based on the fuzzifiedsal@8 €xamples of the new class, allowing new rule neurons to

of the weights, which while representing crisp exemplars, a2€ constructed to represent the class.

fuzzified using the provided external MF. 2) SECoS Output Expansiods befits the simplicity of the

The advantage of this algorithm is that, since the memb&EC0S model, the algorithm for the addition of new output
ship functions are not an integral part of the network, tHé@sses to a SECoS network is also simple. A new output
number of MF, their type and their parameters can all BEUronis mser_ted into the network, and the connecuonhnelg_
optimised before the rule extraction process is carried iut from the evolving layer to the new output are set to zero. This
the rules extracted with a particular set of MF are not optjm#92in has the effect of making all existing examples negativ
then the MF can be changed and fresh rules generated, withytdefault. This approach was used in [52] to expand the
altering the SEC0S. This fact was exploited in [163], whep@cabulary of a spoken word recognition system.
evolutionary programming (EP) [37] was used to optimiss set

Fig. 7. SECoS fuzzy rule extraction algorithm

of MF used to extract rules from SECoS. I1l. SIMILARITIES OF ECOS TO OTHER CONSTRUCTIVE
ANN
l. Output Space Expansion in ECoS There are many other constructive neural network algo-

ECoS networks are intended to be used in an online, lifathms apart from ECoS in existence [103]. While older con-
long learning situation. In such situations, it is entirpbssible structive algorithms such as Cascade Correlation [35ingil



[115] or Upstart [40] have very little similarity to ECoS, aneurons in both algorithms is driven by the error of the nekwo
few algorithms have sufficient features in common that sonoger each training example, and when a neuron is added, its
comments on their similarities and differences are infdivea incoming connection weights are set to the input vector of
This comparison is necessarily qualitative, as there seéemghe current training example. The “fine-tuning” of incoming
be no published empirical results comparing ECoS networksnnection weights in GAL is identical to the learning rule
to any of the algorithms discussed here. used in the first layer of adjustable connections in EFUNN and
The Resource Allocating Network (RAN) [137] has severé&ECo0S, where the intention of both is to modify the exemplar
common elements with ECoS. The addition of new neuronspresented by the neuron into a prototype that represents
in both RAN and ECoS are based upon the novelty of eashveral examples in a cluster. Interestingly, it is explici
training example and the network error over each trainirgjated that “a large number of iterations will be necessHry;
example and the neurons that are added will themselves rpg407] , while ECoS is touted as a one-pass algorithm. The
resent these examples. In cases where a neuron is not add#frences between the two are quite informative, however
then the parameters (connection weights or neuron parashet&irstly, GAL was designed for classification applicatiomdyo
are adjusted, in such a way as to optimise performand®3], even though extensions were suggested [11] thatdvoul
of the network over the current training example. Finalhallow it to learn function approximation problems. Becao$e
while RAN and ECoS both use a distance-based function ttas restriction, the connection weights in the hidden ttpat
calculate the activation values of the growing neuron layyer connection layer are used only as class labels. This meanhs th
activation of the output neurons in RAN is based on a motkere is no learning in the second layer, as a class eithstisexi
conventional multiply and sum operation. Differences legw or not. Although there is an equivalent to the error threghol
the algorithms are principally related to the complexityttod parameter from ECoS training, there is no equivalent to the
algorithm and its intended means of application. FirstlgNR sensitivity threshold parameter. This may be because of the
uses Gaussian functions to explicitly represent a region m@striction to applications to classification.
input space, where the region is defined by the parameter®\ comparison of ESOM and the Growing Self-Organising
of Gaussian functions in the growing layer of the networlMap (GSOM) [10] is also informative. Firstly, GSOM per-
Conversely, each neuron in the evolving layer of an ECdBrms vector quantisation, as the original SOM does, wierea
network defines a point in input space, where the point ESOM does not. This obviates the need to perform a Sam-
defined by the connection weight vector of that neuron. ECafon projection on the trained network when visualisation is
neurons do define regions in the input space, but they deuired. Secondly, the GSOM is generally initialised with
so implicitly rather than explicitly. Secondly, RAN perfos several neurons (usually four) before the start of training
an exponential post-processing on the output values of tiwaereas ESOM has no neurons initially. The criteria for addi
inputs, and has a “bias” function attached to the outputrlay@eurons is also different: ESOM adds a neuron immediately
which is adjusted to perform the function mapping. RAN if the error is unacceptable, while GSOM accumulates error
therefore a more complex system, as it has more parameterevter multiple passes over the training set. Finally, GSOMisad
adjust and requires more complex calculations. Finallyp&C neurons only at the edges of the map, while ESOM can add
training is based on the idea of a one-pass, continuous, lifeeurons to any part of the output map.
long learning algorithm, whereas RAN is not. Specifically, A comparison of ECoS with the Growing Cell Structure
RAN has a “resolution” parameter that determines how fine({fsCS) Network algorithm [41], which has a large number of
the RAN matches the function being learned, which decagsnilarities with EC0S. Both algorithms are a winner-takke-
as learning progresses. This means that RAN is unlikely to kimd of network, where the activation of neurons is based on
useful in life-long learning applications. the distance between the neuron and the current input vector
As with RAN, at first glance the Zero Instruction SetGCS networks partition the input space into Voronoi regjons
Computer ZISC [145] looks very similar to ECoS. Bothas ECoS do [159], and the winning neuron during training
activate their neurons based on the distance between inpuiadjusted to be spatially nearer to the current example.
vectors and neurons and both divide the input space iBoth algorithms allow for continuous, life long learningh&
regions. There, however, the similarities end. Whereas differences between the two algorithms are quite significan
ECoS network will always have one neuron that activaté®wever. Firstly, neurons in a GCS are connected together by
for any particular example, with ZISC it is possible that ntedges’. Signal counters are attached to each neuron, asd th
neuron at all will activate for an example. Alternativelgysral counters are used to measure the performance and importance
neurons may activate in response to the same example. Tdfigach neuron. Rather than adding neurons when an example
will require some form of conflict resolution strategy, but arequires them, neurons are added after a set number of exam-
present this situation is dealt with by simply labelling th@les has been presented. Also, new neurons do not represent
example as unidentifiable. The final difference between ECtraining examples: the connections of new neurons are set to
and ZISC is that ZISC is intended for classification purpostise means of the two parent neurons, and the neurons are
only. inserted with the goal of optimising the partitioning of the
The ECoS algorithm, and SECoS in particular, is mogtput space, rather than optimising the representatiorhef t
similar to the Grow and Learn (GAL) constructive algorithninput data. Although both ECoS and GCS adjust the weights
[11]. Both use a distance based activation function, and ded the winning neuron, GCS will adjust the weights of the
with the input data one example at a time. The addition @finners neighbours also. This means that GCS is not a local
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learning algorithm, while ECoS is purely local. GCS are alddlackey-Glass and waste water flow data sets. This algo-
more computationally complex than ECoS, as a large numbighm Meta Learning Evolutionary Artificial Neural Network
of calculations must be made at each step, such as updafiMd EANN) [2] was shown to be more accurate than EFUNN,
and tracking signal counters and calculating the localuesss although EFUNN was faster.
of each neuron. The work reported in [127], [128] compared EFUNN with
The Growing-And-Pruning Radial Basis Function (GAP)the model ANFIS [62] over a handwriting recognition prob-
RBF network [61] also has some similarities with ECoSem, and found that EFUNN was faster to train, more accurate
(GAP)-RBF adds and prunes neurons based on their ‘signéind better at adapting to new data. However, it also found tha
cance’ to the network, where significance is calculated by &FuNN was slower to recall and needed more memory, due
approximation of the effect of the neuron over several ingin to its larger network size.
examples. Neurons are only added if their significance elcee A review of methods of evolving Takagi-Sugeno fuzzy rules
a threshold value, whereas existing neurons are prunediif thvas presented in [138], [139]. The authors compared EFUNN
significance is less than that threshold. The addition ofaresi and DENFIS over the Mackey-Glass function. While DENFIS
is thus similar to the way in which the error threshold drivelsad fewer rules and was more accurate than EFUNN, neither
neuron addition to ECoS: neurons are added to ECoS if thB¥NFIS nor EFUNN was the most accurate model evaluated.
will reduce the error of the network. Also, in those casesnehe A more rigorous evaluation of ECoS networks over iris,
a neuron is not added to (GAP)-RBF, the network parameteyas furnace, and Mackey-Glass data sets was carried out in
are adjusted, analogous to the way in which the connectifi59]. In these experiments, ten-fold cross validation wsed,
weights in ECoS are changed. The authors of [61] also used/aere the data sets were split into two training sets and a
piecewise linear approximation of the Gaussian functitvas t single testing set. The second data set was used to evaieate t
are used in RBF networks, which substantially reduced thdility of the tested networks to adapt to new data afteningi
computational complexity of the algorithm. The algorithsn iover the first training set had finished. EFUNN networks were
still more complex than ECoS, however, and the use of rad@mpared to backpropagation-trained FUNN, and SECoS were
basis functions sets it apart from ECoS, which uses simglempared to backpropagation-trained MLP. In all cases, the
distance-based functions. Finally, the significance ofroes ability of the networks to learn, generalise and adapt were
in (GAP)-RBF is calculated over several examples, whereegaluated.

ECoS is a purely local-learning algorithm that considerlyon The results showed that for each of the data sets, SECoS
one example at a time. and EFUNN were able to learn and generalise with an accuracy
While there are many more constructive algorithms in exithat was not significantly different to either MLP or FuNN.
tence, the algorithms described above are the ones mossinfrurthermore, while MLP and FUNN uniformly exhibited sig-

to ECoS. An important future step is the performance of mficant levels of forgetting after further training on thecend

rigorous, quantitative comparison between these algusgthtraining set there were no significant levels of forgetting

and the appropriate ECoS algorithms. exhibited by either SECoS or EFUNN. All statistical tests of
significance were done to the 99% level of confidence.

IV. EMPIRICAL EVALUATIONS OF ECOS OVER
BENCHMARK DATA SETS V. ECOS APPLICATIONS

Although, there is a relatively large number of publicaion®- Speech Processing
in existence that evaluate ECoS networks over a wide rangeAutomatic speech recognition (ASR) [111] is a challenging
of applications (see Section V), only a few have presentgdoblem and ANN have been fruitfully applied to it many
results over well-established benchmark data sets. Thatse dimes in the past [12], [18], [39], [54], [56], [59], [98],
sets include: iris classification [36]; Box-Jenkins Gasrfage [104], [107], [110], [136], [141], [143], [146], [153]-[19,
[19] time-series data set; Mackey-Glass chaotic timeeseri[157], [158]. ECoS networks are well suited to applications
function [24]; and the waste water flow problem [92]. in ASR [94], as they can more effectively adapt to changes
The authors of [5] reviewed a variety of algorithms over thi@ pronunciation and speakers (which is the major source of
Mackey-Glass data set and found that EFUNN, while not thariation in ASR) than other ANN.
most accurate, was still fairly accurate and was the fastiest In [69] EFUNNs were applied to spoken phoneme recog-
the algorithms they examined. nition. EFUNNs were again applied to this problem in [160],
The model “nonlinear autoregressive moving average witind were shown to be both accurate and highly adaptable.
exogenous inputs” (NARMAX) [46] was compared with DEN-The efficiency of SECoS networks in this application area
FIS over Mackey-Glass time-series. NARMAX was found tevas demonstrated in [165], where a comparison with MLP
be more accurate. showed that they were faster training, more adaptable and
In [134] EFUNN was compared with the proposed algorithmmore accurate than MLP.
Adaptive Resource Allocating Neural Fuzzy Inference Syste  Speech recognition via whole word recognition has also
(ARANFIS) over iris classification and Mackey-Glass timéeen done using ECoS networks. EFUNNs were used in [53],
series. ARANFIS was found to be more accurate. while SECoS were adopted in [52], for speech-control of a
In [1] and [2] an algorithm hybridising evolutionary androbot, and in [50], for control of a home-automation system.
local learning was compared to EFUNN over the gas furnacECoS were again used to recognise whole-words in [51].
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The goal of this paper was to test a speech de-noising methedkls was investigated using several fuzzy neural network
in an in-car environment. A noise-cancellation approack wanodels in [112], including EFUNN and DENFIS. When the
also demonstrated in [83], where the speech recognition wasults of EFUNN and DENFIS were compared with other
done by EFUNN. In each case, ECoS networks were ableft@zy neural models such as ANFIS, it was shown that while
accurately recognise the words, and the adaptation cigabiboth EFUNN and DENFIS had low errors, they were not the
of ECoS, through further training and output space expansidowest reported in the study (a method based on merging
made them far more useful for this task than alternative ANKuzzy sets according to their Hebbian importance, followed

Finally, in [105] ECM was used to cluster English andy tuning fuzzy membership functions using the Least-Mean-
Maori words together, based on their acoustic properti€sjuares algorithm, yielded the greatest accuracy). Théoaum
These “bilingual acoustic clusters” were intended to higltl of rules produced by EFUNN, however, was one of the largest.
similarities and differences between the two languages.

C. Image Processing
B. Bio-Medical Applications of ECoS Although ECoS networks in general could be expected to

Bioinformatics and medicine are strongly related areddnd them§elves_ We_” to image prggessing problems, edpecia
where ANN have been widely applied [16], [25], [178]. ECo®roblems involving image recognition, EFUNN has so far been

networks have been applied to several different problems $5€d (0 the exclusion of all other ECoS algorithms in thimare
this area [79], [116]. The problem investigated in [84], [93] was to classify

Prediction of RNA initiation sites, that is, sites on R,\lAvegetation and ground cover images taken from orbit by SPOT

strands where protein transcription beings, was accohtis satellites: EFUNN was compared to FUNN in this Wor_k._ It was
in [42]. Comparisons between EFUNN and MLP were Carrié’aund that EFUNN was more accurate and faster training than

out, and EFUNN was found to be able to detect unique RNAUNN for this problem.

patterns that other methods could not. EFUNN was used ta-2SSifying motion vector patterns, or the changes from one

model gene regulatory networks in [80]. The data for th?c ame to thﬁ nextkin an MPEIG vi_deo ?treamfwas the applicatiog
model were gene expression levels captured from micr’5‘-[100]' The task was to classify a frame from a compresse

arrays. Useful rules describing the development of thescewd,eo strea_m as one of six clagses: sta‘uc;_ panning, zogming
through time were discovered. object motion; tracking; and dissolve. This work compared

Using EFuNN, the work in [43] identified cancer tissueghe performance of EFUNN against the LVQ algorithm [97],

from gene expression in micro arrays and used rule extractig® well as analysing the effect of varying the number of

to identify cancer genes. No comparison with other algorih membership functions on performance.

was done, but this was not an issue because knowlecigég]e pr(]arforrr;]ance cl).f M.LP and IiFul\llN v*gre.com?a.red n
discovery via rule extraction was the goal of the work. Ukef £ ],tW ereEtFel\mp |cat|?n Wgstt s classification 9[ mnaget
rules were extracted from the trained EFuNN. of textures. u was found fo beé moré accurate and to

Clinical and micro array genetic data was combined usi ve a much lower computational load than MLP. The lower

EFUNN in [44], [45] to generate patient prognoses, where t mputational load presumably came about from EFuNNs

: : : - faster training algorithm.
outcomes were either that the patient would die, or the piti . o .
would recover. A multi-modular approach was used, whe Horticultural applications were the subject of [33], [1/4]

clinical data was modelled by one module and genetic dzI /5], [177]. The problem dealt with her_e was classification
by another. The reported accuracies of EFUNN were hig pest damage on apple tree leaves. This involved pregentin

than those reported by earlier researchers (87.5% as a]bpoéj I colou_r Images to an EFU.NN that then had to identify which
to 77.6%). of three insect pests - Codling Moth, Leafroller and Appdéle

Another application of EFUNN was presented in [106f urling Midge - had caused the damage in the image. EFUNN

. . : ere found to be more accurate at classifying images than k-
In this paper, an EFUNN was used to classify the Stlmu“#ﬁeans, MLP and SVM. The ability to extract fuzzy rules was

received by a subject based on the electrical activity of th? : . ) )

brain. as read by an EEG. Althouah the purpose of SO considered to be an advantage in this application area
’ y ' g purp FuNN were used to classify images of handwritten digits

129], where an extensive exploration of the parametérs o

paper was to demonstrate an Independent Component Anal¥r§i
]E(I)CL:;:% t;(a)lsbes aSiE)Er}o:g:utrzttienmsmg the EEG data, EFUNN K Se EFuUNN and the problem itself was carried out. Accuracies
q ' ranged from 94-99%, showing how effective EFUNN was for

The work reported in [114] modelled kidney function fror‘r}hiS problem
blood levels of the metabolic by-product creatinine. The mo '
tivation of this work was that being able to accurately model
the function of a patient's kidneys allows the commencemeRt Applications in Information Technology
of dialysis treatment to be optimally timed, which improves With the exception of [180], which dealt with robot signal
the patient’s long-term prognosis. In this application,NFES ~ control, applications of ECoS networks in information tech
was found to be more accurate than the algebraic formulaelogy (IT) have focussed entirely on network management
that had been previously used. applications. EFUNN was used in [29] predicting the avaiab

The relationship between the setting of a ventilator maghiity of resources in a heterogeneous network for Voice over IP
used to support patient breathing and patient blood oxyg@rolP) applications, while ESOM was used in the same paper
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to assist in visualising the network quality. A comparisdn dvictoria, finding that EFUNN was more accurate. In follow-up
the accuracy of the EFUNN-based approach with a MLP-bas&drk [17], the predictive power of linear genetic programmi
approach found that while MLP generalised better, EFuNNas also investigated, but EFUNN was still found to be
adapted much faster to the changing dynamics of a real-Igaperior.
network. EFUNN was again used in [60], where the application EFUNN was used in [8], [9] to predict rainfall in the south-
was to optimise a Bluetooth routing protocol. It was foundrn Indian state of Kerala. Comparisons with MLP trained via
that EFUNN reduced the number of useless packets in #tenjugate gradient and backpropagation showed that EFUNN
piconet and improved the reply time between devices withimas more accurate and much faster. A similar application,
the piconet. EFUNN was used to predict places to hand-afiodelling rainfall in Switzerland, was presented in [173],
service in a Multi-Protocol Label Switching (MPLS) networl{176], where the goal was to learn more about the rainfall
in [49], where EFUNN was found to give superior networbhenomenon by extracting fuzzy rules from EFuNN.
quality. EFUNN was again used in [28] for on-line evaluation
The remaining IT applications of ECoS were in networkf trainee performance in a virtual reality training task. A
security. In [3], [4] EFUNN were used for network intrusiorcomparison with MLP showed that EFUNN was marginally
detection, where they achieved a detection accuracy of 1008ore accurate (98.6% compared with 95.6%).
Incoming network packets were analysed by EFuNN in [22] The problem of detecting abnormal behaviour by the oc-
to determine whether or not the packets represented arkattatipants of an intelligent environment was addressed in][142
A comparison with MLP showed that the rapid adaptatiowhere they used a SEC0S network to integrate the data from
capability of EFUNN made it the better choice for this apt8 different sensors in a single room. While the accuracy of
plication. The work reported in [108], [109] used ESOM t&GEC0S was equivalent to other methods that were investigate
detect anomalous network activity to attempt to detect asktw the fast training speed and adaptability of SECoS made iemor
intrusions, and [132] used ECM and EFIS, a hybrid of HyFISseful.
[95] and DENFIS to profile network traffic to detect network Time-delay neural networks and EFuNN were used to
anomalies. Again, the adaptivity of ECoS networks were @assify the outputs of an artificial nose in [184], where it
major advantage. Finally, [179] used an improved ESOMas shown that EFUNN was faster and more accurate.
algorithm to cluster together multiple network intrusiderés, A method of identifying people by combining speech and
thus reducing the number of alerts the operator had to déakge information, using ECoS, was presented in [185] which
with. The improvement to ESOM was an improved method efsed ECF to identify speakers and a modified ZISC [145] to

selecting the initial connection weights. identify faces.
An entry in the RoboCupRescue competition was described
E. Economics in [183], where EFUNN was used to integrate sensors on a

dgscue robot and determine whether or not a building was on

L - ; - fire. Fuzzy rule extraction was heavily used in this appiaat
for connectionist systems [171]. Despite this, relatividw .
applications in economics have been investigated usingSECo [165.3]_[_170] used SECOS networks to predlc_t the abundance
networks. of aphids in Can.telrbury, New Zealand, from cll_mate \{anablg
In [82] the task was to predict the New Zealand stoc-IEhe superior training speed of SECoS made it possible to in-

market index the SE40. Comparison of the results of EFuN\f@Stig‘?‘te which of the cl_imate_ variables were more sigmiica
with a FUNN showed that EFUNN was both more accural® aphid abundance_, _by iteratively removing _va_nables ftben
and more adaptable than FUNN. EFUNN were also appliedqf)lta set and examining the effects on prediction accuracy.
predicting the SE40 in [156], although no comparison with EFUNN and ANFIS were Compafed over the _prob_lem of
other models was presented. The NASDAQ-100 stock ingdiedelling the spmal effects of anti-smoking Ieglslat!on 0
was modelled in [7], where an EFUNN was used to predi}f ung smokers in [135]. The result_s showed that while both
whether or not stocks were going to go up or down. TH gorithms were capable of modelling the problem, and that
results were described in the paper as ‘promising’, aIthouEFuNN was faster, ANFIS was more accurate.
no comparison with other predictive methods was reported.

In [30] an ESOM was used to generate a world macroe- VI. FUTURE DIRECTIONS
conomic map, which clustered together countries of simila( |nput Significance
economic performance. EFUNN and ESOM were used in [81]Many methods have been proposed for determining the
to perform a risk analysis of the European monetary union

i ; : . importance of each of the input neurons of an MLP [47],
with the results showing that EFUNN in particular was usefl[| é)] [117], [130]. These methrz)ds are useful for identitg/in]
for this application. , ; .

redundant variables in the data set and for data mining,
where the identification of important variables can be usefu

Economic and financial data is a rich application ar

F. Other Applications in determining what the MLP has learned. So far, however,
In this subsection, other applications of ECoS networks an@ work has come to light in objectively determining the
presented. significance of ECoS inputs. Such a technique would be very

The work presented in [6] compared MLP and EFuNMseful for ECoS, as apart from the advantages of removing
for predicting electricity demand in the Australian state aedundant variables, the greater learning speed of ECo®iwou
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allow an input significance analysis technique to contebut Kasabov [66], [69], [77] suggests a formalisation based on
greatly to data mining with ECoS. hyper-spheres, where there is one hyper-sphere in inpaespa
Although a method using incremental principal componendsd one hyper-sphere in output space for each evolving layer
analysis was reported in [131] for selecting inputs for ECMeuron. The radius of the input hyper-sphere is defined by
/ DENFIS, it is unclear if this method is applicable to othethe sensitivity threshold parametgy;,,., and any example that
ECoS algorithms such as EFUNN. A method for determinirfglls within this hyper-sphere will not cause a new neuron to
input significance by analysing the connection weights in & added to the network.
ECoS network is therefore considered to be an importantThis theory, however, does not describe the effects of the

avenue of future research. other training parameters. Although experimental regug]
show that the parameters have different effects upon the
B. Optimisation behaviour of an ECoS network, this theory does not tackle

A number of methods for optimising ECoS networks usinaarameter optimisation.

EC have been discussed in this review. All of these meth-V.vhIIe an attempt at a formallsaFlon based.on Vo_ron0|
. T . . regions was made in [159], this was incomplete in that it was
ods used single-objective algorithms, whereas multi-cibje

algorithms [38] may be more suitable, as the goal is to ng?strlc_ted to_ umformly_d!stnbuted data and did not S“.‘»"@_W

. ways in which the training parameters could be optimised. A
only improve the performance of the ECoS but also to reduce 2 .

X .complete, testable formalisation of ECoS networks is tioeee
the size (or rate of growth) of the network. However, EC is~_
. . L . Tequired as a matter of urgency.
in many ways unsatisfactory as an optimisation technique,
for a number of reasons. Firstly, EC algorithms are costly
in terms of the computing power required. This conflicts
with the motivation of ECoS as a fast, on-line algorithm. The first ten years of evolving connectionist systems have
Secondly, EC-based algorithms optimise the ECoS to a specghown that they are fast and efficient learning algorithnas th
set of data, which is unsuitable for life-long learning. ghi are able to adapt to new data without forgetting the old. &hes
non-evolutionary algorithms exist for automatically astjng years have also seen the creation of an exciting variety of
the parameters of back-propagation training [126], sugb-al algorithms. Each of these algorithms has certain advastage
rithms have not yet been developed for ECoS. Plainly, if sudn disadvantages, and areas of application. While it doés no
a technique were possible, it would be very advantageossgem likely that the basic algorithms will significantly clge,
as the automatic selection of ECoS training parameters, ibis likely that further refinements and improvements tosthe
training were under way, would be a significant advantage, algorithms will be developed in the future. The real-world
it would allow the rapid training advantages of ECoS to beffectiveness of these algorithms has also been shown,eby th
retained. It seems likely that a formalisation of ECoS, sagh wide variety of applications to which they have been applied
is discussed in the following subsection, would point tadgar is also likely that more applications will be fruitfully adessed
methods of automatically determining at least the two liegyn with the use of ECoS networks. The next decade is sure to see
rate parameters. interesting developments in both algorithms and appbceti

VII. CONCLUSION

C. Formalisation APPENDIX

Traditional ANN are supported by a large body of theory LIST OF ABBREVIATIONS AND ACRONYMS
[26], [99], [101], [123]. This body of theory describes: HOWANFIS — Adaptive Neural Fuzzy Inference System
the ANN training algorithms behave, given the settings efrth ANN — Artificial Neural Networks
training parameters; How the training algorithms allow thARANFIS — Adaptive Resource Allocating Neural Fuzzy
network to capture knowledge; And how this knowledge ikference System
represented by the ANN. ASR — Automatic Speech Recognition
This theory assists the neural network practitioner in bofbENFIS — Dynamic Evolving Neuro-Fuzzy Inference System
applying these algorithms and in optimising and extendifdECS — Dynamic Evolving Computation System
them. A theoretical basis is also useful in assisting tHeCF — Evolving Clustering Function
acceptance of a new algorithm: other researchers are ma@M — Evolving Clustering Method
likely to utilise a new algorithm if its theoretical groumgj ECMC — Evolving Clustering Method for Classification
is known. More importantly, a formalisation would almosECoS — Evolving Connectionist System
certainly point to methods of addressing the previous tweFCM — Evolving Fuzzy Clustering Method
issues in this section. EFIS — Evolving Fuzzy Inference System
It is for these reasons that a theoretical basis to EC&FuNN — Evolving Fuzzy Neural Network
is desirable. Any theory, or formalisation, that descrilles ES — Evolution Strategy
ECoS algorithm must cover two distinct aspects. Firstlg tHESOM — Evolving Self-Organising Map
behaviour, or state, of the network at any timeSecondly, FuNN — Fuzzy Neural Network
the way in which the state of the network changes as it trairGA — Genetic Algorithm
which includes the effect each training parameter has on t8AL — Grow and Learn Network
changes made to the ECoS by the training algorithm. (GAP)-RBF — (Growing and Pruning) Radial Basis Function



GSOM - Growing Self-Organising Map [14]
HyFIS — Hybrid Fuzzy Inference System
ICA — Independent Component Analysis [15]

IIS — Intelligent Information Systems

MF — Membership Function

MLEANN — Meta Learning Evolutionary Artificial Neural [16]
Network

MPLS — Multi-Protocol Label Switching [17]
NARMAX — nonlinear autoregressive moving average with
exogenous inputs

NECo0S — Nominal-scale Evolving Connectionist System  [18]
RAN — Resource Allocating Network

RBF — Radial Basis Function [19]
RE-EFUNN — Rule Extraction from EFUNN
SECo0S - Simple Evolving Connectionist System 20]

SEC0S-FRE — SEC0S Fuzzy Rule Extraction

SOM - Self Organising Map

SRN — Simple Recurrent Network (21]
TDNN — Time Delay Neural Network

\VolP — Voice over IP

WEFuUNN — Weighted EFUNN (22]
ZISC — Zero Instruction Set Computer

[23]
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